

UltraTech Cement Limited

(Unit: Kotputli Cement Works-Power Plant)

TEAM MEMBER

- Hari. K. Chaturvedi
- Ajay Dhama
- Manoj Kumar
- Pintu Dodiya

Assistant Vice president Sr. Manager Sr. Manager Manager

Welcome to CII 19th National Award for Excellence in Energy Management (FY-2022)

Contents

Company profile and Flow diagram

- Energy Consumption Overview current year
 - Specific energy consumption data in last 3 years
 - Information on competitor's and Bench marking

Energy saving projects implemented in consecutive 3 years

Contents

3

4

5

6

8

9

Major innovative projects implemented in FY'20-21

Utilization of renewable energy

Environment Management-Ash Utilization GHE Emission & Water

Best Practice in plant for performance improvement

10 Team work employee involvement & monitoring

11 Energy Management system

Profile

- UltraTech Cement.....
- Kotputli Cement Work
- An Aditya Birla Group Company.
- 2X23 MW Captive Power Plant
- 3.3 MTPA capacity Green field Cement plant.
- Certified with ISO 9001, 14001, 45001, ISO 27001, ISO 50001 & ISO 17025.
- UltraTech-Kotputli TPP won First prize in "National Energy Conservation Award- 2017" by Ministry of Power Awarded by honourable President of India.
- The continual Energy improvements by KCW TPP have been recognized by awarding "CII – Excellence Energy Efficient Unit award" for last consecutive four years at CII – Hyderabad
- Adopted World Class Manufacturing Excellence Model

Thermal Power Plant

ADITYA BIRLA

UltraTech

Energy Consumption Overview FY-21

S. No.	Parameters	UOM	Value
1	Power Generation TPP & WHRS	Lacs Kwh	2004
2	PLF-TPP	%	89.23
3	PLF- WHRS	%	76.84
4	Availability	%	100
5	Gross Heat Rate	Kcal/Kwh	2982
6	Auxiliary Power -TPP	%	7.27
7	Auxiliary Power – WHRS	%	2.75
8	Boiler Efficiency	%	87.57
9	Turbine Heat Rate	Kcal/Kwh	2624
10	DM water Consumption	Ltr./Kwh	0.058
11	Raw Water Consumption	Ltr./Kwh	0.194

Specific Energy Consumption Last Three Year

ADITYA BIRLA

UltraTech

Specific Energy Consumption Variance

TPP Auxiliary Power Consumption In %

Excellence Journey of energy management Achieved Continual decreasing trend of TPP auxiliary power consumption.

Plant Heat Rate Kcal/Kwh

> Excellence Journey of energy management

Continuous decreasing trend of

plant heat rate

Benchmarking with group Unit FY-20-21

Parameter	Unit	HC	APCW	AC	ACW	GCW	GC	VC	RC	SG	KCW
Installed Capacity	мwн	46	100	73	71	92	55	46	108	57.5	46
Туре		CFBC	CFBC	CFBC & AFBC	CFBC & AFBC	CFBC	CFBC	CFBC	CFBC & AFBC	CFBC & AFBC	CFBC
PLF	%	67.30	70.62	82.56	93.01	75.06	68.62	68.86	72.97	55.16	89.23
Plant Heat Rate	kcal/k wh	3125	3178	3089	3060	3101	3045	3011	3161	3269	2982
APC	%	8.69	7.67	8.18	7.43	7.81	7.64	7.08	9.58	9.24	7.33

National Benchmarking

3.15 CAPTIVE POWER PLANT												
Parameter	Unit	Plant1	Rent2	Plant 3	Plant 4	Plant 5	Plant 6	Plant 7	Plant 8	Flant 9	Plant 10	KCW
installed capacity	MW	B	30	9	15	17.5	12.5	25 x 2	15	17.5	17.5	2X23
Туре		AFBC	AFBC	AFBC	AFBC	AFBC	AFBC	CFBC	AFBC	AFBC	AFBC	CFBC
R.F	*	823	68.5	885	5	84	88	97.4	4	77.8	85	89.2
Heat rate	Kai/kWh	3250.36	3327	3040	3348	3018	3490	2932	3495	3035	3074	2982
Coal CV	Kcal/kg	5268.83	5503	3204	4062	3213	Petcoke +Lignite (NCV): 4940	6475	4981	3175	3205	6699
LOI – Bed ash	%	201	19.42	4	5.12	٩	0.4-0.5	3.73	14.21	4	<1	2.5
inst hender pressure	Bar	55	5.5	6	5.2	6	6	6.4	5.5	6	6	4.9
Fly ash tpt pressure	Bar	45	4	5	3.5	5	4.5	5.2	4	5	5	4.0
APC	*	797	853	8.95	9.1	9.3	9.5	9.51	9.55	956	9.69	7.33

Benchmarking With UltraTech Plant's FY -2020-21

Road Map - Plant Heat rate

Road Map - Auxiliary Power

	Energy Savings Projects FY-2018-19							
SN	Energy Saving Projects	Sav i Electrica l Energy (MWH)	i ng Achi Therma I Energy (Ton/Ye ar)	e ved (Rs. Million)	Investme nt (Rs. Million)	Pay back Month		
1	Replacement of ACC-1 HDG tube bundles with SRC tube bundles.	6167	1102	22.35	50.4	27		
2	Interconnection of Instrument and service air.	345.0	-	1.56	0.02	1		
3	Installation of energy efficient fan's in ACC	183.9	-	0.83	.95	14		
4	Unit-2 bed ash cooler fan by installation of VFD in place of DOL.	113.85	-	0.51	.42	10		
5	Turbine lube oil pump by replacement of energy efficient pump.	33.12		0.15	0.16	13		
6	Reduce heat loss in condensate line by interconnection both unit		16	.15				
7	CHP Power optimization.	27.60		.12				
8	Compressed air system optimization.	20.7		.09				
9	Fly ash power optimization	12.42		.06	0	0		
10	Cooling tower fan power optimization	10.35		.05	0	0		

Energy Savings Projects FY-2019-20

		Savin	g Achieved			
SN	Energy Saving Projects	Electrical Energy (MWH)	Thermal Energy (Ton/Year)	(Rs. Million)	Investment (Rs. Million)	Pay back Month
1	Installed Waste heat recovery Power plant.	28964.68		131.62	1180	33
2	Power wheeling & Power selling.		490.05	4.93		
3	Reduction in steam dumping.		428.79	4.31		
4	Reduction in Loss of ignition in boiler (LOI).		214.4	2.15	0.50	3.0
5	Compressed air optimization.	543.15		2.82		
6	Boiler Wind box pressure reduction.	457.95		2.38		
7	Boiler feed pump Differential pressure reduction.	155.33		0.81		
8	Boiler Secondary air (SA) fan header pressure reduction.	117.86		0.61		
7	Air conditioning power optimization.	46.86		0.24		
9	Cooling tower pump pressure optimization.	39.05		0.2		

Energy Savings Projects FY-2020-21

		Savi				
SN	Energy Saving Projects	Electrical Energy (MWH)	Thermal Energy (Ton/Year)	(Rs. Million)	Investment (Rs. Million)	Pay back Month
1	Installed Waste heat recovery Power plant.	67050.53		281.2	1180	33
2	Single unit TPP Operation.	82.5	3590	37.60	0	0
3	TG #1 & 2 major over hauling.	382.77	1720	18.54	4.0	2.59
4	Digitalization – Optimax		129.0	1.25	10	72
5	Steam Dumping reduction		473	4.57		
6	Turbine vacuum improvement.		301	2.91		
7	ACC bundle cleaning.		2.89	1.87		
8	Boiler wind box pressure reduction.	330.33		1.62		

		Energy Savings Projects F	Y-202	0-21		<u> </u>	UltraTech
SN		Energy Saving Projects	Sav Electrical Energy (MWH)	ing Achie Thermal Energy (Ton/Ye ar)	e ved (Rs. Million)	Investme nt (Rs. Million)	Pay back Month
9	Water tre	atment power optimization.	179.36		0.88		
10	Reduction	n in LOI (loss of ignition)		86	0.83		
11	Boiler fee	d pump Differential pressure reduction.	165.33		0.81		
12	CHP (coa	I handling plant) optimization	91.2		0.45		
13	Boiler Sec	ondary air (SA) fan header pressure reduction.	73.48		0.36	Nil	NA
14	Compress	ed air optimization	73.5		0.36		
15	Cooling to	ower pump pressure optimization.	71.81		0.35		
16	ESP –pow	er optimization.	54.44		0.27		
17	P&V (Pre	ssure & ventilation) power optimization	50.77		0.25		
18	Air condit	ioning power optimization.	48.76		0.24		

Encon Project # 1 :- Single Raw Air Cooled Condenser

Theme:-

- Technology Up gradation of Unit-1 Air Cooled Condenser.
- Problem Statement:-
- Higher auxiliary power consumption of TPP.
- Higher plant heat rate.
- ACC contributes about 8-10 % of the total APC of TPP.

Complexity:-

 The Capital for new ALE multi row tube bundle replacement had higher cost (10 Cr).

Approach :-

- Change of metallurgy of fin material.
- Exploring the low cost & efficient alternative technology.
- Technology Adoption:-
- Approached new technology Single Row Condenser (SRC)
- Installed at KCW first time in India.

Theme:-

- Technology Up gradation of Air Cooled Condenser fan blade.
- Problem Statement:-
 - Higher power consumption of ACC fan's
 - ACC contributes about 8-10 % of the total APC of

Solution:-

 Replaced new design of ENCON make aerodynamic design high efficiency energy saving E-Glass Epoxy FRP Fan Blades.

Out Come

- Power Saving:-1.84 Lacs Kwh /annum.
- Cost Saving- :- 8.34 Lacs/annum.

Encon Project #3 :- Digitalization

Theme:-

TPP Process Digitalization by Technology Up gradation.

Problem Statement:-

- Fluctuating equipment stability with operational demand
- Efficiency & output disparities, these tracking & corrective systems unavailable.
- Higher steam dumping during the cement plant drive load deviation

Solution :-

 Installed ABB-Optimax system for process evenness & automation.

Out Come :-

- Coal Saving :- 405.92 MT
- Cost Saving :- 35.21 Lacs. (Fy 20 & 21)
- CO2 reduction :- 1253.27

Encon Project #4 :- Single unit TPP Operation

Theme:-

 Plant Operation with Single unit TPP@ higher_PLF >95 % to improve heat rate and auxiliary power consumption

Problem Statement:-

- PLF was at 67.24%
- Plant heat rate at 3168 Kcal/kwh.
- Auxiliary power at 8.03 %

Given Solution:-

KCW team has worked out the solution to run the plant with One unit TPP, WHRS and Grid, by taking out 1 unit from operation.

Outcome :-

- Fuel Saving :- 3899 MT/annum
- Auxiliary Power :- 5.36 Lacs Kwh/annum
- Total Cost saving :- 347.47 Lacs /Annum.

Project # 5 Waste Heat Recovery Boiler

Theme:-

Waste heat recovery .

Problem Statement:-

- Preheater and Cooler waste heat account for more than 35.5% of that heat loss.
- In the past few global warming conservation of energy have been given major importance

Given Solution :-

 Installation of waste heat recovery boiler in cooler and Pre heater

Out Come

TPP Fuel Saving	:- 3674.38 Lac/ Annum
Power Generation saving	:- 4124 Lac/Annum
TPP Auxiliary power Saving	:- 47.41 Lac/Annum
Raw water Saving	:- 9200 KL/Annum.
Reduction in CO2 emission	:- 131838 MT.
Power mix cost : 3.79 from	4.52 Rs/Kwh.

Utilization of renewable energy Resources

Capacity Of renewable energy @ Plant and Colony

Installed Solar Power Generation 100 KWH
 Installed Solar Power Generation at TPP area : 1
 KWH

Best Practice for Emission Control & Monitoring

] Theme :-

- Stack emission control
- Project Title :-
- ESP -Panel UP-Gradation from SCR to IGBT Based for emission control.
- Project Cost :- 61.98 Lacs

Outcome :

Even control of stack SPM according to boiler load.

Theme :- Control of sox

Project Title :-

 Best Controlling of Sox by feed lime stone in boiler with auto control logic

Outcome :-

- Boiler separate sox analyzer for visual monitoring at CCR.
- Feed lime stone in boiler by rotary air lock for controlling the Sox.
- Close loop control from Boiler sox analyzer & Lime stone RAV.

Environment - Water Management

Raw Water Cons. M³/MW

Theme:- Reutilization of boiler blow down Water

Approach:-

Earlier boiler blow down water was collected in effluent pit-no use of that water.

Solution :-

Provision made for re-use of the blow down water

Theme:- Rain water collecting arrangement

Approach:-

 During Rainy season, large amount water goes in to open trench and wastage.

Given Solution :-

 Arrangement done for rain water collection above raw water tank.

Green belt development

Teamwork, Employee Involvement & Monitoring

- >Well Established energy management cell headed by
- FH Technical and DH TPP(Certified EM).
- Daily monitoring of Heat rate and Aux. power deviation report.
- ➤Analysis of equipment performance for deviation.
- ➤Identification of energy conservation project/work.
- Theme base suggestions/Kaizens scheme under "Energy Saving ".
- Feasibility study of suggestions & submit proposal for sanction.
- ➢ Preparation of detail action plan.
- \succ Benefits analysis after project implementation.

Teamwork, Employee Involvement & Monitoring

Project implementation through Kaizen

SN	Energy Conservation Idea	Status	Kaizen Submission			
1	Reduction the auxiliary cooling water pump pressure from 2.7 kg/cm2 to 2.5 kg/cm2	Completed	1000			
2	MDC RAV shaft sealing cold air provided by PA fan out let in place utilization of compressed. So power saving of compressor.	Completed				
3	Single time start the Coal handling plant for filling the boiler bunker	500				
4	Pushing air provided to Fly ash conveying system for avoiding line jamming and avoiding continuous utilisation of service air.	Completed	0			
5	Utilization of ESP fist field Ash to coal bunker for recycle and reduction of LOI	Completed	2018-19 2019-20			
1. Ei 1. Ei 2. Ei 3. Av 4. Ei 5. R	 KCWites, happy to announce that we are celebrating August'21 as "Energy Conservation Month" "Energy conservation" is the process of reducing energy use through changes in everyday behaviors and optimizing processes and operations. "Energy efficiency" is the goal of efforts to reduce the amount of energy required to provide productions (Conservation suggestions by individual (Ocs., Wage Board and Contract Workmen) (Conservation suggestions by team (GRT Team) (Wareness campaign on Energy Conservation. wareness campaign on Energy Conservation. teward and recognition for High saving potential and feasible suggestions. 	ucts and services.				
UltraTech Cement Ltd. Kotputli Cement Works Energy Conservation Month August 21 "Energy Conservation Month" -August 21						

Energy Conservation related projects impacting and contributing for natural resources conservation are being approved immediately by the management.

Awards & Accolades

Mational Energy Conservation Award 2017

All TPP Team with Award

"Excellent Energy Efficient Unit" From 2014 to 2017.

" water efficient unit" In year 2016 & 2017.

© Confe

"Water Efficient" Unit" in year 2012.

Certificate by the Ministry of Power, year 2012-13

The less you burn, the more you earn

Sincere Thanks..

UltraTech Cement Ltd Kotputli Cement Works Thermal Power Plant Hari. K. Chaturvedi E. Mail ID :hari.chaturvedi@adityabirla.com Mob. No. :- 9844890230

LOCAL KO VOCAL BANANA HAI

" विदेशी सीमेंट नही देसी सीमेंट लगाओ देश के No.1 सीमेंट अल्ट्राटेक से देश को बनाओ"